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Chaotic Response of a Limit Cycle 
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External periodic modulation of a nonlinear oscillator may lead to chaotic 
behavior. This phenomenon is attributed to the existence of a strange 
attractor, which embodies essentially a folding motion as is met within the 
Bernoulli shift or the baker's transformation. The results obtained for the 
Brussels model are discussed from this viewpoint. 
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1. I N T R O D U C T I O N  

In thermodynamic equilibrium it is known that the symmetry of a system may 
be lowered in a cooperative way when the system is energetically open to and 
is controlled by a heat reservoir. The ordered state which emerges as a result 
of  such a transition is generally restricted to a regular spatial structure or 
pattern. In other words, equilibrium ordered states, although different f rom 
those of higher symmetry, are restricted to the fixed points of  the motion. 
This is due to the time-reversal symmetry which is characteristic of  thermo- 
dynamic equilibrium. In the neighborhood of equilibrium, time-reversal 
symmetry also leads to the Onsager reciprocity of  transport  coefficients, m 

When the system is controlled by more than one independent external 
reservoir the state of  the system generally deviates f rom thermodynamic 
equilibrium. When the deviation is made large enough by external control 
there may appear new kinds of  ordered states, (2,a~ namely, in addition to the 
fixed points which are familiar in thermodynamic equilibrium, there may 
appear recurring orbital motions which are structurally stable, thus forming 
new phases. In particular there appear periodic orbits which are known as 
limit cycles and are structurally stable. A limit cycle is a stable nonlinear 
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oscillation which exhibits much less amplitude response than a linear oscil- 
lator. The various kinds of  characteristic biorhythms in living systems seem, 
from this point of  view, not unrelated to their dynamic stability with respect 
to external perturbations. 

Recently, however, a third phase, different from periodic orbits or fixed 
points, has come under serious consideration. This is connected with the 
appearance of a recurrent aperiodic orbit. (4,5~ Although the existence of such 
solutions has been known for some time, the recognition of the structural 
stability leading to a new "phase"  belongs to relatively recent years, and the 
turbulence phenomenon in hydrodynamics has been reinterpreted from this 
point of view. (5~ The third variety may thus be called a "turbulent  phase" in a 
wider context, as contrasted with "spatial pat tern" or " temporal  rhythm." 

In this paper we discuss the third type of phase, namely the aperiodic or 
chaotic behavior of deterministic orbits, by way of an example which was 
treated in our previous papers. (6'7~ This is the case of forced oscillation of  a 
nonlinear oscillator with two degrees of freedom. We thus discuss a chaotic 
response under a regular excitation/~ 

In Section 2 the results of a numerical computation are summarized in 
the form of a phase diagram and the motion in the phase plane is described in 
some detail using the stroboscopic representation. In Section 3 a one- 
dimensional discrete representation is invoked, and it is demonstrated that 
salient features of the behavior of the solution may be understood on the 
basis of known mathematical theorems (12.17-2o~ for the one-dimensional case. 
Invariant measure, Liapunov number, and measure-theoretic en t ropy  are 
estimated with respect to the asymptotic invariant manifold. The paper closes 
with a short discussion on the possible relevance of  the chaotic response in a 
number of situations. 

2. C H A O T I C  R E S P O N S E  OF A R E A C T I N G  S Y S T E M  

The model we adopted is the one due to Prigogine, Lefever, and Nicolis 
(Brusselator) ~9,2,6,7~ having two degrees of freedom under an external periodic 
excitation. It is shown in Fig. 1 schematically and is represented by the follow- 
ing set of equations: 

d X / d t  = X ~ r -  B X -  X +  A + a c o s c o t  (2.1) 
d r ~ a t  = - x 2 r + B X  (2.2) 

Fig. 1. The Brussels model. A reaction A + B--+ C 
| 

is described by a scheme �9 --~ (~ .  
7 | 
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where X and Y stand for the concentrations of the reference reactants, and A 
and B stand for those of the major reactants, which are assumed to be control- 
lable. The last term on the right-hand side of (2.1) stands for the external 
periodic excitation having amplitude a and frequency oJ. 

According to the difference in character of the response or output 
behavior, a phase diagram can be obtained in the a-co space, which is shown 
in Figs. 2a-2c. 

As was described in our previous paper, (7'8) a concise way of recognizing 
the output character is the stroboscopic representation, (1~ in which the 
successive points specifying the state of the system are plotted in the X -Y  

a:I 
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Fig. 2a. Phase diagram. The numbers indicate the periods of harmonic periodicity 
appearing in the respective regions. A stroboscopic limit cycle of nonintegral period 
appears in the shaded region Q, and a chaotic response is found in the region X. 
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Fig. 2b. Enlarged view of the lowest part of x and the neighborhood in Fig. 2a. The part 
of the line a = 0.05 inside the region x is investigated in detail, and the results are 
summarized in Fig. 2c. 
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Fig. 2c. Schematic representation of the response in the region X (a = 0.05). The arrows 
attached to the main horizontal line indicate the direction of increase in the applied 
frequency ~o. The boundaries of the region x are indicated by ':J and If. Vertical solid lines 
across the main horizontal line designate points at which the basic period appears; the 
vertical broken lines designate points at which the cascade of bifurcations terminates. 
An arrow between two vertical lines indicates the direction of the successive bifurcations. 
C" indicates a stable cycle of period n. The scheme corresponds to the window structure 
shown in Fig. 5. The regions in which successive bifurcations C I2 --+ C 12"2 -+ C 12"22 ~ . - .  
appear are indicated by an additional solid line along the line a = 0.05 in Fig. 2b. 

plane (phase plane) at instants separated by a regular time interval r = 2rr/w. 
It  is clear that a fixed point in this representation corresponds to a perfect 
entrainment, which appears in the region indicated by 1 (single-point perio- 
dicity). The region indicated by an integer n corresponds to n-point periodicity, 
and the region indicated by Q corresponds to a quasiperiodicity of  the output, 
of  which the stroboscopic phase portraits are a set of  n fixed points and a 
closed orbit, respectively. 

The subject to be discussed in this paper is, however, the behavior of  the 
output in the region indicated by x (chaotic or aperiodic). (8) The stroboscopic 
phase portrait  in this region is neither a fixed point nor a periodic orbit. 
Although the collection of asymptotic phase points forms an invariant 
manifold having a definite shape, the order in which the successive phase 
points appears in this manifold is chaotic and never looks periodic in a 

practical sense. 
A typical example of  the output behavior in this region is described in 

Fig. 3c, which corresponds to the set of  parameter  values a = 0.05 and 
oJ -- 0.81. The four islands indicated by thick curves are the asymptotic 
invariant manifold formed by the stroboscopic portraits and the thin curves 
connecting these islands indicate the behavior of  the system between the 
stroboscopic illuminations. The fact that  the stroboscopic phase portrait  
consists of  four separate islands implies that there exists an approximate four- 
point periodicity. That  they are islands, however, indicates that deviations 
exist f rom the four-point periodicity, though they are not very large. Let us 
follow the order of  numbers along the thinner curve and trace the behavior of  
the solution in more detail, starting from island @ In the stage f rom (1) to 
(~), the island (~) is rotated by an angle rr with little deformation. In the second 



Chaotic Response of a Limit Cycle 69 

stage f rom (~) to (~), the invariant manifold is folded roughly in the middle. 
In  the third stage f rom @ to @ ,  the whole island is rotated by an angle ~r 
with increasing folding. In  the last stage o f  recursion fron5 @ to (~), the 
folded figure is pressed into an effective line element which coincides with the 
starting island @ .  With repetit ion o f  this type o f  motion,  i.e., similar to the 
baker 's  t ransformation,  it is not  difficult to realize that  there results a complete 
mixing o f  all parts o f  the line element or  island. Let us, for instance, imagine 
two orbits which are infinitesimally different at the outset. F r o m  the con- 
tinuity o f  the mapping  two representative points move close to each other  in 

P,,q 1F--, 

(a) 

0.00 01,0 0120 0.~0 01~o 0150 0100' 01~0 0100 0.00 1100 
X 

Fig. 3. Phase portrait in the region x (a = 0.05). (a) ~o = 0.8015 corresponds to three- 
point periodicity (with respect to the mapping of an island onto itself). (b) o~ = 0.81 
corresponds to a chaotic response. (c) ~o = 0.81 : stroboscopic phase portrait. The four 
islands indicated by the thick curves correspond to the asymptotic invariant manifolds. 
The thin curves visiting these islands in the order of the attached numbers indicate the 
behavior of the system between the stroboscopic illuminations. 
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the early stage; however, eventually the distance between the two orbits can 
be arbitrarily large inside the island, and the correlation of the two motions 
definitely decreases. In other words, the motion of the phase point on the 
island exhibits no regularity and looks chaotic. The whole island, which is 
definitely an invariant of the motion, may be called a strange attractor, (5~ and 
it is a produgt of the infinite folding motion described above. (11~ The decrease 
of  the correlation is an essential fact in the observation of turbulence, and 
cannot be expected for a simple multiperiodicity. This led Ruelle to a new 
interpretation of  hydrodynamic turbulence in terms of strange attractors. (5~ 

The shape of the asymptotic invariant manifold in our case looks 
practically one-dimensional, in spite of the two-dimensional frame of the 
phase portrait. This must be a reflection of the mechanism through which the 
strange attractor is built up. Let us start with an ensemble of the representative 
points which are all close to each other. Due to the orbital instability de- 
scribed above, the scale of the ensemble must be expanding at least in one 
direction. The existence of an asymptotic invariant manifold of  a finite size, 
however, requires an essential recursion, which inhibits the infinite dilution of  
the original ensemble. A sufficient condition for the essential recursion is the 
existence of another direction along which the ensemble is contracting. When 
this is the case there appears a hyperbolicity in the phase plane which is 
transverse to the direction of  flow. 

When in addition the rate of contraction is sufficiently large as compared 
with that of expansion, which necessitates the folding, the final result of 
convolution is expected to be practically one-dimensional. In order to see the 
hyperbolicity of the orbital ensemble, it is clear that at least two degrees of 
freedom are needed. For  a continuous flow, however, one can expect neither 
expansion nor contraction along the direction of  the flow. Therefore, at least 
three degrees of freedom are needed in order to see the hyperbolicity in a 
continuous flow. Our example satisfies the minimum necessary condition in 
order to recognize the hyperbolicity, and it will be shown later that in fact 
such a hyperbolicity does exist in our case. 

3. USE OF O N E - D I M E N S I O N A L  A N A L Y S I S  

As was seen in the previous section, the asymptotic manifold which is 
invariant under stroboscopic transformation looks almost one-dimensional 
in the present case. This suggests that in terms of a curvilinear coordinate the 
problem may be reduced to or at least simulated by a discrete mapping of a 
single variable, i.e., 

x,+l = F(xO (3.1) 

where F is the transfer function characterizing the discrete mappingJ ~ 
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One may resort then to the known properties and relations which have 
been proved mathematically for the one-dimensional problem. (12-15> When 
Lorenz (4) treated deterministic nonperiodic flow in the Bdnard problem, he 
introduced a particular Poincar6 map, i.e., the one-dimensional discrete 
representation of the continuous flow, and it was of significant help in 
anticipating the nonperiodic character of the solution. Let us introduce a 
one-dimensional map in the same spirit. 

3.1.  T h e  T r a n s f e r  F u n c t i o n  

In introducing a one-dimensional representation into our problem it is 
convenient to consider island (~) in particular, recognizing that the invariant 
manifold is almost linear in shape. One may then dispense with the introduc- 
tion of a curvilinear coordinate, and just use the coordinate x (or y) in the 
one-dimensional parametrization. In Fig. 4 an example of  the transfer 
function F(x) obtained in this way is given. This particular example corre- 
sponds to the case of chaotic output inside the region X. Note that F corre- 
sponds to a fourfold transformation in the stroboscopic scheme, because only 
island (~) was chosen out of the four. In the numerical construction of the 
transfer function we notice several significant characteristics. 

(i) The shape of the transfer function F(x) is surprisingly simple and is 
almost quadratic in x. It is far from trivial that the motion obeys such a 
deterministic rule in spite of the seemingly chaotic character of the output. 

F(X) 

.35 

W=.81 
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Fig. 4. (a) The transfer function F(x) which governs the mapping of island (~) onto 
itself (a = 0.05, ~o = 0.81). (b) Invariant measure based on histogram construction 
(a = 0.05, co = 0.81). 
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(ii) The domain on which the transfer function operates has definite 
limits at both ends (Xm < X < XM). This reflects the fact that a finite interval 
of x is mapped repeatedly onto itself, being expanded and folded each time. 

(iii) The whole domain of the transfer function is filled up by the 
calculated images; thus an apparently continuous function F(x) is obtained. 

Remembering that only n fixed points (or its definite multiple) can be 
expected when there is an n-point periodicity, this apparent continuity implies 
that there actually exists a practical chaos in the output. 

3.2. Degree of Expansion Mx)  of the Mapping 

Suppose a point x + /~x in the neighborhood of point x is transferred to 
a point F(x) + Ax through the mapping F. One can define the characteristic 
multiplier (12) 

Z(x ) -  IAxlSxl = ldFIdxl (3.2) 

as a quantity measuring the degree of expansion of the mapping F at x. The 
condition ;~(x) > 1 corresponds to an expanding map, and ,~(x) < 1 to a 
contracting map. When x is chosen as a fixed point of the mapping F, it follows 
immediately that the fixed point x is stable if A(x) < 1 and it is unstable if 
h(x) > 1. For the special case in which x is a periodic point, ,~(x) is known as 
the Floquet multiplier. 

Let us now consider the degree of expansion )t(~)(x) of the k-fold mapping 

F(k)(x) =-- F. F ... F(x) (3.3) 

Then there exists the following relation, known as the chain rule(16): 

dF(k)(x) ] d F(F(k- ~)(x)) I 
;~<~)(x) - - - B Y - -  = 

= , = 1  laF  , ~=-[ I \ dy/~  = r( )(x, [ (chain r u l e ) ( 3 . 4 )  

Suppose in particular that x is chosen as one of the k-point periodic points 
x~ k) (i = 1, 2,..., k); then each x{ k) appears on the right-hand side of (3.4) just 
once, and thus the right-hand side does not depend on i. Consequently, the 
values of the derivative of the transfer function F(x) at k periodic pointsx~ ~) 
are equal to each other. As a special case of this chain rule there exists the 
relation (14) 

~(~)(x~ ~)) = {?,(~)(x~))} ~ (3.5) 

Let us now examine the stability of k-periodic points as a function of an 
externally controlled parameter p. First the k-periodic points have to be 
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generated, and they must  appear  as a stable fixed point  o f  a k-fold mapping  in 
order  to be observed at all. The conditions for such a situation may  be written 
as follows: 

F(k)(x~ ~)) = X~ k~ (3.6) 
and  

~< 1 ( 3 . 7 )  

for  a particular value Pl o f  parameter  p. The equality indicates the condit ion 
that  the transfer function F(e~(x) initially becomes tangent  to the straight line 
y = x,  say on increasing p. This leads to the term tangent bifurcation. (Is~ 

On increasing the parameter  further one arrives at a second bifurcation 
at p = P2, for which the condit ion 

( dF(k~'~ = 
dx  ] x = x}~ - 1 

is satisfied. For  this condition, however, the relation (3.5) ensures that 

(3.8) 

( dF(2k~ ] 
dx  1:,=,~}~, = 1 (3.9) 

This means that  for  p > Pc the k periodic points x~ k~ (i = 1, 2,..., k) become 
unstable, but  at the same time 2k periodic points are generated nearby 
th rough  a tangent bifurcation. The whole process o f  destabilization and the 
generation o f  twice as many  as stable fixed points is called a harmonic or 
pi tch fork  bifurcation. (15~ It  is clear that  on further  increase in p there may 
appear  a pi tchfork bifurcation o f  the 2k periodic points into 4k-point 

Fc~X~ O) ~ 

0.0 

- 1.0 
-1.5 . . . . . . . . . . . . . .  , .... 

.79 .80 i81 82 i83 
Fig. 5. Window structure (cf. Fig. 2c. The characteristic multiplier, or the degree of 
expansion, is plotted against the input frequency (a controlled parameter). The window 
specified by k corresponds to a region of stability for a series of harmonic bifurcations 
based on k-point periodicity (with respect to a mapping of an island onto itself). The 
arrow points toward the conjugate windows having the same basic periodicity. (k-point 
periodicity appears in a parenthetic pair.) 
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periodicity, and so forth. In this way a cascade of harmonic bifurcations 
indicated by (2" x k)-point periodicity may appear on increasing p. It  should 
be noted, however, that the intervals of p assigned to the consecutive stable 
periodicities become smaller as n increases, and the total sum of  the series of  
intervals converges in such a way that an approximate relation 

A (2k) ~ 3 - 2{,Vk)} 2 (3.10) 

is valid for most of  the harmonic bifurcations, a4) This is obviously consistent 
with (3.8) and (3.9). I t  should further be noted that there exists a set of  
solutions 

~<2.• ~ _ 1.5 (for all k) (3.11) 
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Fig. 6. Series of transfer functions suggesting window structure: (a) co = 0.80:  To  the 
left o f  the left w i n d o w  (left wall),  chaotic .  (b) oJ = 0 .8015:  Inside the left w i n d o w  of  
three-point  periodicity.  (c) o, = 0.81 : Between  the two w i ndows  (middle wall), chaotic .  
(d) ~o = 0.821 : Ins ide  the right w i n d o w  of three-point  periodicity.  (e) oJ = 0.825: To  the 
right of  the right w i n d o w  (right wall) ,  chaot ic .  
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Fig. 6. Continued. 

for a particular value p| of  the parameter  p. The last relation (3.11) is con- 
nected with the fact that the whole family of  (2" x k)-point periodic points 
based on the k-point periodicity becomes unstable at p = po~. The interval 
Pl >/P ~> P= which corresponds to the region of stability, belonging to the 
k-point periodicity [1 1> ,Vk~(X~k)) /> -- 1.5] was called by May a "window". (15) 

All the expectations stated above can be confirmed with our particular 
model, and the results are summarized in Fig. 5. 

The input frequency co was adopted as a controllable parameter and the 
window structure obtained by numerical analysis is indicated with reference 
to the value of  h (~ - (dF(k~/dx)x=x~5~. One may note that each window starts 
when A (k~ = 1, and when h (k~ = - 1 there appears the first harmonic bifurca- 
tion, which then cascades into a c u r t a i n  of bifurcations until h (k~ = - 1 . 5 ,  
where everything becomes unstable, and the window terminates. 



Chaot ic  Response of a Limit Cycle 77 

w-81 (c) 

§ "~ +~. 

++ -~+ 
.§ + 

+.§ + 
+ + 
% 

+ 

t 

~ + 

�9 $ 

o 

== 

3. O0 S, 10 3 . 2 0  3 . 3 0  3. qO 3 . 5 0  S, 60 3 , ' /0  S, 80 S .90  q,O0 

X ~ 1 0  "1 

Fig. 6. Continued. 

Between the windows specified by k-point periodicities there remain 
finite gaps which might be called a "wall." It is in this wall region that one 
finds chaotic responses as described in the previous section. In Fig. 6 a series of 
transfer functions F(x) is given for comparison. Comparing Fig. 6 with Fig. 5 
according to the values of parameter co, one may easily realize the existence of 
the window structure. It should also be recognized that the range of existence 
of k-point periodicity has both upper and lower limits in the parameter space 
for the present case. In other words, k-point periodic windows appear always 
as parenthetic pairs. Outside the parentheses no k-point periodicity exists, 
whereas between the two windows the whole harmonic family of k-point 
periodicity exists, but is unstable. Thus the wall region corresponds to chaotic 
output. It is also noted that odd k parentheses are embedded into other odd k 
parentheses according to increasing order of magnitude. 
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Fig. 6. Continued. 

3.3. Theorem of Li and Yorke 

Our natural concern lies in the content of the seemingly chaotic output, 
for on the practical level one is usually unable to distinguish an aperiodic 
motion from a periodic motion of long period. In this connection Li and 
Yorke <12~ have shown that mathematically both types of motions are bound 
to coexist. Motivated by the earlier work of Lorenz, ~4> Li and Yorke proved a 
remarkable mathematical theorem for the solution of the one-dimensional 
difference equation (3.1), and a number of applications have also been 
discussed. ~16-~9) It is remarkable because it secures the possibility of chaotic 
behavior in a simple deterministic model, a problem which is related to the 
theory of ergodicity and of turbulence. According to their theorem the 
following statements are proved: 

Suppose there exists a genuine three-point cycle with respect to the 
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Fig. 6. Continued. 

mapping Fgiven in (3.1), i.e., a solution such that x,+3 = x,  with x,+2 r x ,  
and xn+ 1 ~ xn. 

(I) It then necessarily follows that there are also cycles with period k, 
where k is any positive integer. 

(II) Furthermore, there exists an uncountable number of initial points Xo 
from which the system does not eventually settle into any of these cycles (i.e., 
not "asymptotically periodic," or simply "aperiodic").  

The three-point cycle in the premise has since been generalized to five-, 
seven-, (18~ and then to [k ( r  2")]-point cycles. (19) Concerning the statement (I), 
it was independently shown by Sarkovskii (2~ and Stefan (~7) that there exists 
the following directed series: 

3 w5  ~ 7  ~- . . . .  2.3 ~ 2 . 5  ~-2.7 w . . . .  22.3 ~-22.5 ~ 2 2 . 7  ~-... 
- 2 3 ~ 2 2  ~ - 2 ~ 1  ( 3 . 1 2 )  
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Namely, where the existence of a k-point cycle is presupposed, the existence of 
all the periodicities standing to the right of k necessarily follows. One may 
easily recognize that this order is followed in the window structure of the 
present model. 

As has been pointed out in the process of proving (3.12), the condition 
for an (odd-k)-point cycle to be a possible cycle of the lowest order is that 
the consecutive image points should be traced in the order (or its entire 
reverse) indicated in Fig. 7. 

Why does the existence of such periodic orbits lead to aperiodic orbits ? 
The basic fact here is the recurrent property of the asymptotic motion under 
the original mapping. Both periodic and aperiodic motions can be the mani- 
festation of this property. From this point of view the existence of a periodic 
orbit implies the recurrent property of the mapping itself, and this in turn 
requires the possible aperiodic motion to be recurrent. For such aperiodic 
motions to be actually observed, it suffices that all the possible periodic 
motions are unstable. In this situation the orbit has to come back to the 
neighborhood of the original point after some excursion, as suggested by 
Fig. 7. A possibility then arises that the mapping of a small interval is not 
necessarily unique, and that various different periodicities may exist. How- 
ever, the image point can never settle into the original point, because any 
periodic orbit is unstable, and is repeatedly diverted into a further excursion, 
which naturally leads to a recurrent aperiodic motion. The wall between the 
two windows of three-point cycles seems exactly the region in which the 
aperiodic motion is to be observed, for all the periodic motions are orbitally 
unstable, but other walls may be candidates as well. 

3.4. Invar iant  Measure  and Liapunov Number  

In Fig. 4 a pseudocontinuous representation of the transfer function 
F(x) was obtained in the interval xm < x < x~. One may then provide this 

(a) (b) 

1 3  J ~ 5  
k=3 k=5 

Fig. 7. Snapback property of the minimal cycle. (Schematic). The points belonging to an 
(odd-k)-point cycle should be mapped in the indicated order, in order for this particular 
cycle to be the minimal cycle. (a) k --- 3, (b) k = 5. 
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invariant interval with a definite measure, simply by constructing the histo- 
gram, associating to each image point a common weight. For instance, the 
measure obtained by N image points, starting from the initial point x0, may 
be defined by (21~ 

~xo.N(x) = ~/,=o 3(x - F"~(Xo)) (3.13) 

When N is taken large enough, it is expected that txxo,N(X) becomes indepen- 
dent of (x0, N); therefore the limit quantity may be interpreted as an invariant 
measure, i.e., 

t~(x) = lim ~xo,N(x) (3.14) 

where the ergodic property is tacitly assumed. 
For our particular case the approximate measure constructed in this way 

is indicated in Fig. 4 for N = 1000. 
There is another quantity which is closely related to the invariant meas- 

ure. It is the Liapunov number X(Xo). (21-23~ This is a characteristic exponent 
associated with the rate of magnification of the neighborhood of a point Xo, 
and is defined by 

_ ( d F ~ ' ~  X(Xo) ==- lira 1 log 

,~-1 / d F \  [ 
= lira 1 ~  log [Txx),,=x~ , - ~  n (3.15) 

where xk = F(xk_ 1) and the second expression follows from the chain rule 
(3.4). One may note from (3.2) that the Liapunov number X(Xo) provides the 
rate of repulsion between nearby orbits. It naturally follows that X(xo) < 0 
for an attractor, x(xo) > 0 for a repeller, and X(Xo) = 0 for marginal situations. 

In the particular case in which motion along the invariant manifold is 
ergodic, the Liapunov number X(Xo) is expected to be positive and independent 
of the initial point x0, X(Xo) = X being a constant characterizing the invariant 
manifold as a whole. 

In the present model Xm ~- 0.316, XM ~ 0.376, and the Liapunov number 
is computed to be X = 0.536. The independence on the initial point suggests 
that a mixing actually occurs as a result of the aperiodic motion along the 
invariant manifold. 

It is known that the Liapunov number X is in some cases equivalent to 
the topological entropy r which is based on the number of periodic orbits 
and is defined by 

~b .=_ lira(l/n) 

• log[number of fixed points under the mapping F ~"~] (3.16) 



82 Kazuhisa Tomita and Tohru Kai 

It is also related to the measure-theoretic entropy h(/z) through the measure 
assigned to the invariant manifold. Bowen and Ruelle (24) have shown that 
there exists a relation 

- _I Iz(dx) x+(x) <~ 0 (3.17) hot) 

where X+(x) is X(X) in the one-dimensional case. For  the general multi- 
dimensional case X+ is defined by a sum of  products of  positive X and the 
dimension of its eigenspace. 

Suppose the situation is similar to the case of  the axiom A system; 
may be determined f rom (3.17)as that which maximizes the lefthand side 
expression. 

As X+(X) is independent of  x in our particular case, it is concluded then- 
that h = X = 0.536, provided the measure/z is normalized. 

4. THE W I D T H  OF THE Q U A S I - O N E - D I M E N S I O N A L  
I N V A R I A N T  M A N I F O L D  

In Section 3 the mathematical properties of  truly one-dimensional 
mapping were found to be of  significant help in describing the behavior of  a 
two-dimensional diffeomorphism, of  which the stroboscopic portrait of  the 
invariant manifold looks almost one-dimensional. Naturally, however, the 
approximation to a two-dimensional diffeomorphism in terms of a one- 
dimensional noninvertible mapping has its own limitation. In this connection 
one has carefully to examine the fine-scale plot of  part  of  the seemingly one- 
dimensional manifold in our computer simulation, as shown in Fig. 8. One 

Y 

2.8588 

2.8586 

�9 37265 
i 

�9 37270 X 

Fig. 8. Fine-scale plot of the quasi-one- 
dimensional invariant manifold indicating 
finite width, of the orderof 10 -6. All the 
figures correspond to the uppermost part 
of the island (~)(a = 0.05, oJ = 0.81). 
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may note then a finite width of  the quasi-one-dimensional manifold, which is 
of  the order of  10 -5 . This is to be compared with the overall length of the 
manifold, which is of  the order of  10-1. 

In what follows a method is given of estimating the width of the manifold 
in a perturbative way. (25,26~ The idea is to convert the one-dimensional non- 
invertible map x.  + 1 = F(x~), defined by (3.1) in Section 3, back into a two- 
dimensional homeomorphism, of  which the one-dimensional map remains a 
good first approximation insofar as the invariant manifold is concerned. 

This can be done by introducing a small second coordinate y as follows: 

x,~+l ~- F(x,~) + y,~, y,~+~ = ax,~ ([a[ << 1) (4.1) 

Here a indicates the relative scale of  spread in y to that in x, and a = 0 
corresponds to the one-dimensional map, which has nonunique inversion. 
With a -r 0 the unique inversion is given by 

x,~ = y,~+l/a, y ,  = - F ( y , + i / a )  + x ,+ l  (4.2) 

Let us now examine the modes of expansion of the neighborhood of a point 
(x, y)  which belongs to the invariant manifold. For the mode characterized 
by a characteristic multiplier m, the small deviation (Ax, Ay) from the point 
satisfies the linearized relation 

m ( A X ~  l ~ ( A x ~  
, A , ,  = ( ;  (4.3) 

O] k a y ]  

where t - F'(x).  This leads to an equation for m: 

m 2 -  A m - a = 0  (4.4) 

from which one finds 

m = �89 __+ (h 2 + 4a) 112} (4.5) 

As ]a[ << 1 the two modes are characterized by 

ml ~ h and m2 = - a / h  (4.6) 

A computer estimation was made of the two characteristic multipliers on 
our original model. As an example the successive mappings in the neighbor- 
hood of a point of four cycles were computed, and ml and rn 2 were found to 
be of  the order of  unity and 10-~, respectively. This implies that a ~ - 10- ~ 
at this point. 

Supposing that a is common to the entire invariant manifold, which is 
reflected by the width approximately, Eq. (4.1) is now completely specified. 
One may then solve (4.1) in an iterative way, i.e., in the form of an expansion 
in terms of  the small quantity a, and find the invariant manifold directly. 
From (4.1) one finds the relation 

x~+l = F(yn+~/a) + y,~ (4.7) 
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In the spirit of  Bridges and Rowlands, (26~ the zeroth-order approximation to 
the invariant manifold is given by 

x = F(y /a)  (4.8) 

neglecting the second term on the right-hand side. In first order, the approxi- 
mate invariant manifold is given by 

x = r ( y / a )  + a F - l ( y / a )  (4.9) 

The next order approximation is given by 

x = {F + a(F + a F - 1 ) - l } ( y / a )  (4.10) 

and so forth. 
For  a single-humpect function F the inverse F -1  is two-valued, and this 

type of inversion appears repeatedly in the above construction. This implies 
that the calculated invariant manifold consists of infinitely many branches or 
foldings. However, it is also clear from the above construction that the 
relative scale of  the overall spread of the invariant manifold in y with respect 
to that in x is given by a. 

The relative scale 10 -4 found from the simulation in Fig. 8 is in fact of 
the same order as the a ~ 10 -4 determined independently from the aniso- 
tropy in characteristic multiplier. This justifies the above method of construc- 
tion on the one hand, and on the other it demonstrates that the observed 
small spread of the invariant manifold is in fact nontriviat, i.e., noninstru- 
mental, and has its origin in the nonlinear dynamic folding. 

The idea of one-dimensional approximation lies in the neglect of the 
difference of the order of the width, i.e., the order of 10-5, in the values of x. 
Let us suppose two points initially separated by this order of magnitude 
along the invariant manifold. On each step of the mapping this difference is 
magnified by a factor e x. How many steps, then, does it require for this 
difference to become comparable with the total span of  x, which is of the 
order of 10-1? For  the special case in which a = 0.05 and co = 0.81 this 
critical number of steps n satisfies the followiiag relation: 

e ~x x 10 -5 ~ 10 -1 (4.11) 

By using the estimated value x = 0.536, n is estimated as 

n ~> 17 (4.12) 

This implies that after 17 steps of mapping, the one-dimensional approxima- 
tion loses its strict validity. At the same time, however, the mixing is complet- 
ed under the same condition. 
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5. S U M M A R Y  A N D  D I S C U S S I O N  

Using a typical model (the Brussels model), the chaotic response of a 
limit cycle to an external periodic excitation has been investigated in detail 
with the stroboscopic representation. Chaotic outputs have been found for 
intermediate values of the input amplitude and frequency lying inside the 
region of subharmonic resonance. The asymptotic invariant manifold looks 
almost linear in the two-dimensional phase plane. Mathematical theorems 
established for a one-dimensional system were found to be of significant help 
in anticipating and describing the behavior of the chaotic output under 
consideration. In reality, however, it was also demonstrated that the quasi- 
linear invariant manifold has its own width, of the order of 10 -~, which is 
associated with the folding construction of the strange attractor. 

Time-independent external control may also lead to chaotic output; 
however, the choice of Poincar6 map is more difficult in this case. 

It is not clear whether the cascade of harmonic bifurcations, though 
undoubtedly one of the typical situations pointing to chaos, is the unique 
symptom of chaos or not. The relation between the appearance of homoclinic 
orbits and the cascade of bifurcations should be the subject of future investiga- 
tions. 

One final comment on the definition of chaos: It is obvious that the 
finite accuracy of any physical measurement or computer simulation inhibits a 
clear-cut distinction among (a) long enough transient motions, (b) periodic 
motions with long enough period, and (c) aperiodic motions. For instance, 
even the sensitive dependence on initial condition may not distinguish the 
above three cases. In this situation physicists have to look for some appro- 
priate quantity which may describe the practical chaos, while possibly cover- 
ing mathematically difference situations. In this connection the theorem of Li 
and Yorke may be taken to assert the coexistence of (b) and (c). Suppose in 
addition one may find a quantity which is practically common between the 
two cases; then it would be of great use in describing physical chaos. The 
connection between the Liapunov characteristic exponent [associated with 
(c)] and the fixed point distribution [associated with (b)] would be an extremely 
interesting subject of study from this point of view. 
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